Tema I.- Diseño Físico

Ficheros

Índices

Fundamentos de sistemas de bases de datos. Elmasri, R; Navathe, S. Addison-Wesley [cap.13 en 5ª edic.]

Índice

- Registros / Ficheros
- Operaciones sobre ficheros
- Ficheros de registros desordenados (heap)
- Ficheros de registros ordenados
- Técnicas de dispersión (fichero hash)
 - Dispersión interna (memoria)
 - Dispersión externa (disco)

Técnicas de dispersión (hash)

- Proporcionan un acceso muy rápido a los registros bajo una condición de igualdad sobre el campo de dispersión (campo hash).
 - Si el campo es clave se denomina clave de dispersión (clave hash)
- Un registro con campo hash de valor K se almacena en la posición i, donde i=h(K), y h es la función hash.
- Tipos de dispersión:
 - Interna (en memoria)
 - Externa (en disco)

Dispersión interna (memoria)

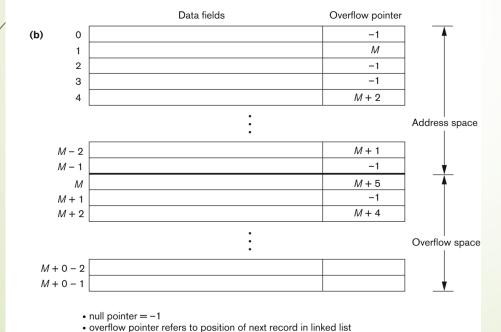
- La tabla hash es un array de registros
 - Cada elemento del array es un registro de datos
- Resolución de <u>colisiones</u>:

1. Direccionamiento abierto

Se recorren las siguientes posiciones hasta encontrar una vacía y se coloca.

2. Encadenamiento

- ► El array se extiende con posiciones de desbordamiento.
- Se añade un puntero a cada ubicación de registro.
- El registro se coloca en una ubicación de desbordamiento libre.
- Se mantiene una lista enlazada de registros de desbordamiento por cada dirección hash.


3. Dispersión múltiple

- Se aplica una segunda función (llamada rehash).
- Si se produce otra colisión, se utiliza direccionamiento abierto u otra tercera función, y después direccionamiento abierto, si fuese necesario.

Figure 13.8Internal hashing data structures. (a) Array of *M* positions for use in internal hashing. (b) Collision resolution by chaining records.

(a)	Name	Ssn	Job	Salary
0				
1				
2				
3				
			:	
<i>M</i> − 2 <i>M</i> − 1				
<i>M</i> – 1				

a) Array de M posiciones para hashing interno

b) Resolución de colisiones por encadenamiento

Ejercicio dispersión interna

Un fichero con CODCLI como clave de direccionamiento calculado, que contiene registros con los siguientes valores de CODCLI.

Cargar estos registros en un array de tamaño 8 en el orden dado, empleando la función de direccionamiento calculado h(K) = K mod 8.

a) Resolver las colisiones utilizando la técnica de encadenamiento

Registro	K	h(K)
record1	7107	3
record2	844	4
record3	1540	4
record4	4800	0
record5	826	2
record6	7110	6
record7	1821	5
record8	2376	0
record9	2002	2
record10	4981	5
record11	962	2
record12	2084	4
record13	2306	2

ESPACIO DE DIRECCIONES

Posición [Registros	puntero
0	record 4	9
1		-1
2	record 5	10
3	record 1	-1
4	record 2	8
5	record 7	11
6	record 6	-1
7		-1

ESPACIO DE DESBORDAMIENTO

Posición	Registros	puntero
8	record 3	13
9	record 8	-1
10	record 9	12
11	record 10	-1
12	record 11	14
13	record 12	-1
14	record 13	-1

b) Resolver las colisiones por direccionamiento abierto

ESPACIO DE DIRECCIONES

Posición	Registros
0	record4
1	record8
2	record5
	record1
4 5	record2
	record3
6	record6
7	record7

A partir del registro 9 (inclusive) no se incluyen más registros

3 – Supongamos un fichero CLIENTES con *Numcli* como clave de direccionamiento calculado, que contiene registros con los siguientes valores de *Numcli*.

Cargar estos registros en un array de tamaño 8 en el orden dado, empleando la función de direccionamiento calculado h(K) = K mod 8.

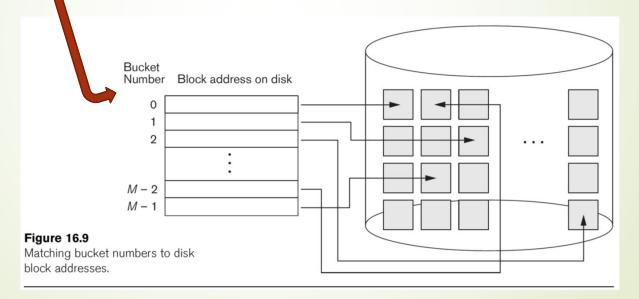
c) Resolver las colisiones por **dispersión múltiple** aplicando una segunda función de dispersión h2(K) = K mod 2

Registro	K	h(K)	
record1	7107	3	
record2	844	4	
record3	1540	4	
record4	4800	0	
record5	826	2	
record6	7110	6	
record7	1821	5	
record8	2376	0	
record9	2002	2	
record10	4981	5	
record11	962	2	
record12	2084	4	
record13	2306	2	

ESPACIO DE DIRECCIONES

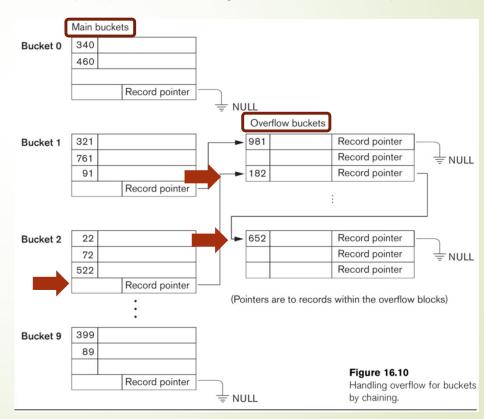
Posición	Registros
0	record3 (*)
1	record4 (**)
2	record5
3	record1
4	record2
5	record7
6	record6
7	record8 (***)

A partir del registro 9 (inclusive) no se incluyen más registros porque el fichero está lleno y no hay zona de desbordamiento


(*) h (1540) = 4 => colisión => h2(1540) = 0 => se coloca en la posición 0

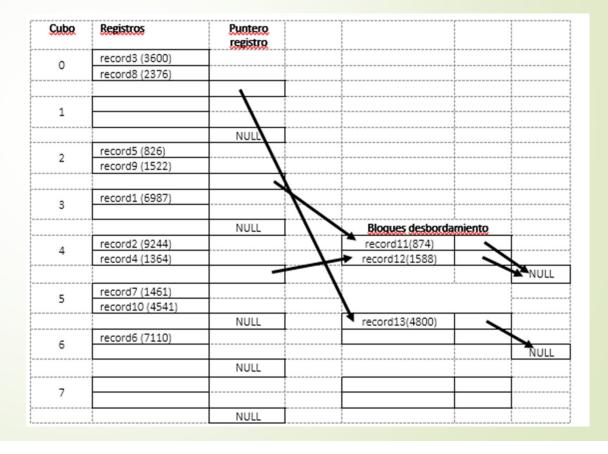
(**) h (4800) = 0 => colisión => h2(4800) = 0 => colisión => se coloca en la siguiente posición libre (la posición 1)

(***) h (2376) = 0 => colisión => h2(2376) = 0 => colisión => se coloca en la siguiente posición libre (la posición 7)


Dispersión externa (en disco)

- El espacio de direcciones se compone de cubos (buckets). En Oracle son páginas
 - Un cubo puede ser 1 bloque de disco o un grupo de bloques contiguos
 - Cada cubo almacena varios registros
- La función hash mapea el valor del campo hash a un nº de cubo
- La <u>cabecera del fichero</u> incluye una tabla que convierte el nº de cubo en la dirección absoluta de bloque de disco

Dispersión externa (en disco)


- Las colisiones se pueden resolver utilizando una variación del encadenamiento:
 - Cada cubo tiene un puntero a una lista enlazada de registros de desbordamiento
 - Son punteros de registro <dirección de bloque, posición del registro dentro del bloque>

Ejercicio: Un fichero con CODCLI como clave de direccionamiento calculado contiene registros con los valores K de CODCLI que se muestran en la siguiente tabla. El fichero utiliza 8 cubos, numerados del 0 a 7. Cada cubo es 1 bloque del disco y puede contener 2 registros.

Cargar estos registros en el fichero en el orden dado, empleando la función de direccionamiento calculado h(K) = K mod 8. Para resolver las colisiones se utiliza la técnica de encadenamiento (dispersión estática) para ficheros de disco

Registro	K	h(K) = K mod 8
record1	6987	3
record2	9244	4
record3	3600	0
record4	1364	4
record5	826	2
record6	7110	6
record7	1461	5
record8	2376	0
record9	1522	2
record10	4541	5
record11	874	2
record12	1588	4
record13	4800	0

Dispersión externa (en disco)

- Para reducir los registros de overflow, el fichero hash habitualmente se mantiene entre un 70-80% lleno
- La función hash debe redistribuir los registros uniformemente entre los cubos
 - En caso contrario, el tiempo de búsqueda se incrementa mucho debido a la cantidad de registros de overflow existente
- Desventajas de la dispersión externa estática:
 - Un nº fijo de cubos es problemático si el nº de registros del fichero crece o disminuye
 - La búsqueda de un registro por un campo distinto al campo hash es tan costosa como en caso de un fichero desordenado
 - El acceso ordenado por el campo hash es ineficiente (hay que ordenar los registros)