Lógica para la Computación

Convocatoria de junio. Primer parcial, 29/11/24

Convocatoria de junio. Frimer parciai, 29/11/24										
Nom	ore: DNI: PCEO \square Grupo A \square Grupo B \square									
$\underline{\text{NOTA:}}$ Es necesario acumular un mínimo de 3 ptos (el 50% de la puntuación total) en el conjunto de las pruebas escritas para sumar las notas prácticas. La duración del examen es de 1'5 horas, y se puntúa sobre 2'5 ptos.										
1.	1. (0.75 ptos) Asumiendo el uso del algoritmo SLD del intérprete SWIProlog, <u>reproducir</u> un predicado que muestre un comportamiento de no terminación. <u>Ilustrarlo</u> mediante el árbol de resolución correspondiente.									
	Ver el Ejemplo 6.5.1 del fichero									
	Documentos y Enlaces/Material de Estudio/Prolog/prolog.pdf									
	de la entrada Moovi de la asignatura, y que ha servido de guía a las clases.									
2. (0.5 ptos) Reproducir un predicado que implemente el algoritmo de unificación de Robinson. Justificar su funcionamiento sobre los términos $T_1 = f(X, g(X, h(Y)))$ y $T_2 = f(Z, g(Z; Z))$.										
	Un posible predicado sería el siguiente:									
	igual(X,X).									

Documentos y Enlaces/Material de Estudio/Prolog/prolog.pdf

El Ejemplo 6.3.2 del fichero

 $de \ la \ entrada \ Moovi \ de \ la \ asignatura, \ y \ que \ ha \ servido \ de \ guía \ a \ las \ clases, \ ilustra \ su \ aplicación \ a \ los \ términos \ indicados.$

3. (0.75 ptos) Consideremos el predicado definido mediante la fórmula siguien	3.	(0.75 ptc	s) Considere	mos el pre	dicado defini	do mediante	la fórmula	siguiente
---	----	-----------	--------------	------------	---------------	-------------	------------	-----------

$$\forall P \ \forall X \ [P(X) \lor \neg P(X)]$$

conocido como axioma de inducción. Responder a las siguientes cuestiones:

(a) (0.5 ptos) Describir su semántica declarativa.

Cualesquiera que sean la propiedad P y el elemento X considerados, siempre es cierto que P se verifica o no se verifica sobre X.

(b) (0.25 ptos) Razonar si es posible su tratamiento en base al algoritmo de resolución SLD.

No es posible, ya que los funtores utilizados en el algoritmo SLD descrito son símbolos constantes, cuando la implementación del axioma de inducción requeriría el recurso a funtores variables.

4. (0.5 ptos) Dado el predicado p/2 definido por las cláusulas Prolog:

$$p(X,X) :- !, fail.$$

 $p(X,Y).$

Describir la semántica declarativa de cada una de las cláusulas del programa.

La primera establece que p/2 falla sii sus argumentos unifican.

La segunda, alternativa exclusiva a la primera, establece que p/2 se verifica sii sus argumentos no unifican. Esto es, el predicado identifica parejas de términos no unificables.