Claro, aquí tienes una **chuleta compacta** con todas las fórmulas y conceptos básicos que necesitas para trabajar con señales senoidales como las de tu ejercicio, incluyendo amplitud, frecuencia, desfases, conversiones y desplazamientos temporales.

Chuleta de fórmulas y conceptos para señales senoidales

1. Forma general de una señal sinusoidal

 $x(t)=A \cdot \sin(\omega t + \phi)x(t) = A \cdot \sinh(\omega t + \phi)x(t)$

- AA = Amplitud (máximo valor absoluto de la señal)
- ω\omega = Frecuencia angular (radianes por segundo)
- tt = Tiempo (segundos)
- φ\phi = Fase inicial (radianes)

2. Relación entre frecuencia angular ω\omega y frecuencia en Hertz ff

 $ω=2πf⇔f=ω2π\omega = 2 \pi \frac{1}{u} f \quad Longleftrightarrow \quad f = \frac{2\pi f}{u} f \quad Longleftrightarrow \quad f = \frac{2\pi f}{u} f \quad f = \frac{2\pi$

- ω\omega en rad/s
- ff en ciclos por segundo (Hz)

3. Desfase y retardo temporal

Una señal con desfase φ\phi:

 $sin(\omega t + \phi) sin(\omega t + \phi)$

• Es equivalente a una señal retardada en el tiempo si

Entonces

```
td=-\phi\omega t_d = - \frac{\phi}{\omega} (es un retardo si td>0t_d>0, adelanto si td<0t_d<0)
```

4. Suma de señales senoidales

Si tienes

```
x(t) = \sum i A i \sin(\omega i t + \phi i) x(t) = \sum i A i \sin(\omega i t + \phi i) x(t) = \sum i A i \sin(\omega i t + \phi i) x(t) = \sum i A i \sin(\omega i t + \phi i) x(t) = \sum i A i \sin(\omega i t + \phi i) x(t) = \sum i A i \sin(\omega i t + \phi i) x(t) = \sum i A i \sin(\omega i t + \phi i) x(t) = \sum i A i \sin(\omega i t + \phi i) x(t) = \sum i A i \sin(\omega i t + \phi i) x(t) = \sum i A i \sin(\omega i t + \phi i) x(t) = \sum i A i \sin(\omega i t + \phi i) x(t) = \sum i A i \sin(\omega i t + \phi i) x(t) = \sum i A i \sin(\omega i t + \phi i) x(t) = \sum i A i \sin(\omega i t + \phi i) x(t) = \sum i A i \sin(\omega i t + \phi i) x(t) = \sum i A i \sin(\omega i t + \phi i) x(t) = \sum i A i \sin(\omega i t + \phi i) x(t) = \sum i A i \sin(\omega i t + \phi i) x(t) = \sum i A i \sin(\omega i t + \phi i) x(t) = \sum i A i \sin(\omega i t + \phi i) x(t) = \sum i A i \sin(\omega i t + \phi i) x(t) = \sum i A i \sin(\omega i t + \phi i) x(t) = \sum i A i \sin(\omega i t + \phi i) x(t) = \sum i A i \sin(\omega i t + \phi i) x(t) = \sum i A i \sin(\omega i t + \phi i) x(t) = \sum i A i \sin(\omega i t + \phi i) x(t) = \sum i A i \sin(\omega i t + \phi i) x(t) = \sum i A i \sin(\omega i t + \phi i) x(t) = \sum i A i \sin(\omega i t + \phi i) x(t) = \sum i A i \sin(\omega i t + \phi i) x(t) = \sum i A i \sin(\omega i t + \phi i) x(t) = \sum i A i \sin(\omega i t + \phi i) x(t) = \sum i A i \sin(\omega i t + \phi i) x(t) = \sum i A i \sin(\omega i t + \phi i) x(t) = \sum i A i \sin(\omega i t + \phi i) x(t) = \sum i A i \sin(\omega i t + \phi i) x(t) = \sum i A i \sin(\omega i t + \phi i) x(t) = \sum i A i \sin(\omega i t + \phi i) x(t) = \sum i A i \sin(\omega i t + \phi i) x(t) = \sum i A i \sin(\omega i t + \phi i) x(t) = \sum i A i \sin(\omega i t + \phi i) x(t) = \sum i A i \sin(\omega i t + \phi i) x(t) = \sum i A i \sin(\omega i t + \phi i) x(t) = \sum i A i \sin(\omega i t + \phi i) x(t) = \sum i A i \sin(\omega i t + \phi i) x(t) = \sum i A i \sin(\omega i t + \phi i) x(t) = \sum i A i \sin(\omega i t + \phi i) x(t) = \sum i A i \sin(\omega i t + \phi i) x(t) = \sum i A i \sin(\omega i t + \phi i) x(t) = \sum i A i \sin(\omega i t + \phi i) x(t) = \sum i A i \sin(\omega i t + \phi i) x(t) = \sum i A i \cos(\omega i t + \phi i) x(t) = \sum i A i \cos(\omega i t + \phi i) x(t) = \sum i A i \cos(\omega i t + \phi i) x(t) = \sum i A i \cos(\omega i t + \phi i) x(t) = \sum i A i \cos(\omega i t + \phi i) x(t) = \sum i A i \cos(\omega i t + \phi i) x(t) = \sum i A i \cos(\omega i t + \phi i) x(t) = \sum i A i \cos(\omega i t + \phi i) x(t) = \sum i A i \cos(\omega i t + \phi i) x(t) = \sum i A i \cos(\omega i t + \phi i) x(t) = \sum i A i \cos(\omega i t + \phi i) x(t) = \sum i A i \cos(\omega i t + \phi i) x(t) = \sum i A i \cos(\omega i t + \phi i) x(t) = \sum i A i \cos(\omega i t + \phi i) x(t) = \sum i A i \cos(\omega i t + \phi i) x(t) = \sum i A i \cos(\omega i t + \phi i) x(t) = \sum i A i \cos(\omega i t + \phi i) x(t)
```

Cada término tiene:

- Amplitud AiA i
- Frecuencia angular ωi\omega_i
- Fase φi\phi_i

El espectro de frecuencia está formado por los pares (ωi,Ai)(\omega_i, A_i) y las fases φi\phi i.

5. Conversiones y ejemplos típicos

- Si $\omega = 2\pi \log a = 2\pi$, entonces f=1f = 1 Hz (1 ciclo por segundo)
- Si ω =6 π \omega = 6\pi, entonces f=6 π 2 π =3f = \frac{6\pi}{2\pi} = 3 Hz

6. Cambios de amplitud y distorsión

• Multiplicar la señal por un factor kk:

 $x(t) \rightarrow k \cdot x(t)x(t) \setminus k \cdot x(t)$

cambia la amplitud A→kAA \to k A.

• Cambios distintos en cada armónico producen distorsión armónica de amplitud.

7. Fórmulas útiles para desfases y retardos en señales compuestas

Para una señal compuesta

 $x(t)=\sin(w1t)+\sin(w2t)x(t) = \sin(w_1t) + \sin(w_2t)$

• Una señal retardada tdt_d es

$$x(t-td) = \sin(w1(t-td)) + \sin(w2(t-td)) = \sin(w1t-w1td) + \sin(w2t-w2td)x(t-t_d) = \sin(w_1(t-t_d)) + \sin(w_2(t-t_d)) = \sin(w_1(t-t_d)) + \sin(w_1(t-t_d)) = \sin(w_1(t-t_d)) + \sin$$

8. Espectro de frecuencia

Representa las frecuencias presentes y sus amplitudes:

Frecuencia angular ωi\omega_i (rad/s)	Frecuencia fif_i (Hz)	Amplitud AiA_i	Fase фі\phi_i (rad)
w1w_1	f1=w1/2πf_1 = w_1 / 2\pi	A1A_1	φ1\phi_1
w2w_2	f2=w2/2πf_2 = w_2 / 2\pi	A2A_2	φ2\phi_2

¿Quieres que te haga una tabla lista para copiar o una chuleta más visual con ejemplos?

1. Para
$$-\cos(2t+4\pi)$$
:
Usamos que: $-\cos(\theta)=\cos(\theta+\pi)$
Así que $-\cos(2t+4\pi)=\cos(2t+4\pi+\pi)=\cos(2t+5\pi)$

2. Para $-\sin(2t+4\pi)$:
Usamos que: $-\sin(\theta)=\sin(-\theta)$
Así que $-\sin(2t+4\pi)=\sin(-(2t+4\pi))=\sin(-2t-4\pi)$

3a) ¿A qué crees que se refiere la expresión "distorsión armónica de fase"?

- Se refiere a que las diferentes componentes en frecuencia (armónicos) de una señal sufren diferentes retardos o desplazamientos de fase cuando pasan por un sistema o filtro.
- Esto significa que no todas las frecuencias son retrasadas igual en el tiempo, lo que altera la forma original de la señal porque cambian las relaciones de fase entre armónicos.
- En otras palabras, la señal se distorsiona no por cambio en amplitud, sino porque la fase de las distintas frecuencias cambia de manera no uniforme.

3b) ¿Qué caracteriza a un filtro de Bessel? ¿Tienen alguna utilidad práctica frente a otros tipos de filtros?

- Un filtro de Bessel se caracteriza principalmente por tener una respuesta en fase lineal, es decir, introduce un retardo constante para todas las frecuencias dentro de su banda útil.
- Esto implica que la señal que pasa por el filtro sufre un retraso uniforme, sin distorsión de fase.
- La utilidad práctica es que **preserva la forma temporal de la señal**, algo fundamental en aplicaciones donde la forma de onda es crítica (audio, video,

señales digitales, pulsos).

• En cambio, otros filtros (Butterworth, Chebyshev) pueden tener mejor atenuación fuera de banda, pero distorsionan la fase y deforman la señal temporalmente.

4b) ¿A qué se refiere la expresión "distorsión armónica de amplitud"?

- Se refiere a que las distintas componentes en frecuencia de una señal son amplificadas o atenuadas de forma diferente.
- Esto cambia la relación original de amplitudes entre armónicos, lo que altera la forma de la señal en el dominio temporal.
- En resumen, la señal se "deforma" porque el balance entre las frecuencias ha cambiado.

4c) ¿Es un problema que un filtro no tenga ganancia constante en su banda de paso? ¿Por qué?

- Sí, puede ser un problema.
- Si la ganancia varía dentro de la banda de paso, algunas frecuencias se amplifican o atenúan más que otras.
- Esto provoca distorsión armónica de amplitud, que cambia la forma original de la señal.
- En aplicaciones donde la fidelidad de la señal es importante (audio, vídeo, señales digitales), esta distorsión puede degradar la calidad o la interpretación correcta.
- Por eso, en esos casos se prefieren filtros con ganancia plana en la banda de paso (filtros "de ganancia constante").

Vamos con las preguntas **b)**, **c) y d)** sobre filtros básicos y sus características.

b) Tipos básicos de filtros según las frecuencias que permiten o bloquean

Existen **4 tipos básicos de filtros ideales** en función del rango de frecuencias que dejan pasar o bloquean:

Tipo de filtro	Qué deja pasar	Qué bloquea
Filtro pasa bajos	Frecuencias bajas (hasta fcf_c)	Frecuencias altas (mayores que fcf_c)
Filtro pasa altos	Frecuencias altas (a partir de fcf_c)	Frecuencias bajas (menores que fcf_c)
Filtro pasa banda	Frecuencias dentro de una banda específica [f1,f2][f_1, f_2]	Frecuencias fuera de esa banda
Filtro rechazo banda (elimina banda)	Todas las frecuencias excepto las de una banda [f1,f2][f_1, f_2]	Sólo bloquea la banda específica

Respuesta en frecuencia ideal: magnitud y fase

Para un filtro ideal la magnitud y fase típicas son:

Nota: La fase ideal en la banda de paso suele ser lineal con la frecuencia para evitar distorsión temporal, pero puede variar fuera de banda.

c) ¿Qué es la banda de paso de un filtro?

- Es el intervalo o conjunto de frecuencias para las que el filtro deja pasar las señales con mínima o ninguna atenuación (magnitud cercana a 1).
- Por ejemplo, en un filtro pasa bajos, es el rango de frecuencias desde 0 Hz hasta la frecuencia de corte fcf c.

d) ¿Qué es la banda prohibida de un filtro?

- Es el intervalo o conjunto de frecuencias para las que el filtro bloquea o atenúa fuertemente las señales (magnitud cercana a 0).
- En un filtro pasa bajos, esta banda prohibida son las frecuencias mayores que fcf_c.

Resumen visual

Concepto Definición

Banda de paso Rango de frecuencias que el filtro permite pasar sin atenuación

significativa

Banda Rango de frecuencias que el filtro bloquea o atenúa mucho

prohibida

1. De módulo a decibelios (dB)

$$A_{dB} = 20 \log_{10} (|H(f)|)$$

- A_{dB} : atenuación o ganancia en decibelios (dB)
- ullet |H(f)|: módulo (valor lineal) de la respuesta en frecuencia (entre 0 y 1 normalmente)

2. De decibelios (dB) a módulo

$$|H(f)|=10^{rac{A_{dB}}{20}}$$

- A_{dB} suele ser negativo para atenuación (p. ej., -60 dB)
- Esta fórmula da el valor lineal del módulo correspondiente.





