Tiers TIA-9

Elementos

Infraestructura Complementa ria

Infraestructur

Infraestructi Almacena-

miento

Seguridad

Dispos. de re

Ora Jógica

Donatorollo

_

_

CDA. Infraestructura de los centros de datos

Requisitos de diseño y normativas Elementos y organización física de los centros de datos Elementos y dispositivos de red

> Centros de datos 3º Grado en Ingeniería Informática ESEI

> > Septiembre-2021

- Introducción
- Requisitos de diseño y normativas
 - Estructuración en Áreas Funcionales en TIA-942
 - Niveles de redundancia (Tiers) en TIA-942
- Elementos y organización física de los CD
 - Infraestructura complementaria
 - Infraestructura de procesamiento
 - Infraestructura de almacenamiento.
 - Seguridad física en CD
- Elementos y dispositivos de red
 - Organización lógica
 - Protocolos
 - Cableado
 - Etiquetado

¿Qué es un Centro de Datos?

Según la norma TIA-942 (Estándar de Infraestructura en Telecomunicaciones para Centros de Datos)

data center: a building or portion of a building whose primary function is to house a computer room and its support areas

Los Centros de Datos pueden clasificarse como

- Centros de Datos empresariales (privados, single-tenant)
 - de propiedad privada (operados por entidades corporativas, institucionales o gubernamentales de carácter privado)
 - dan soporte a transacciones y procesamientos de datos internos
 - soporte y administración por parte de equipos de personal interno
- Centros de Datos de ubicación/alojamiento compartido (multi-tenant)
 - son propiedad y están bajo la administración de compañías de telecomunicaciones o de proveedores de servicios
 - ofrecen servicios de tecnología de la información a terceros

Objetivos generales

- facilidad de administración
- flexibilidad v escalabilidad
- eficiencia de red

¿Qué hay en un Centro de Datos? ... depende

Elementos fundamentales

- infraestructura de red/comunicaciones (routers, switches, cableado, ...)
- infraestructura de procesamiento/computación (servidores)
- infraestrcutura de almacenamiento (SAN, arrays de discos, cintas de back-up,...)

Nota: actualmente tendencia hacia la virtualización de estos 3 elementos

Elementos complementarios

- suministro eléctrico (cableado de potencia, SAIs, estabilizadores de tensión, grupos electrógenos, líneas de alimentación externas,...)
- climatización (aire acondicionado, conducciones de aire, ...)
- seguridad física (control de acceso, detección/extinción fuegos, separación en zonas, videovigilancia,...)
- elementos arquitectónicos (suelo técnico, racks, ...)
- monitorización (de red, de recursos computacionales, de seguridad/accesos,)
- .

Introducción Normativas

funcionales TIA-942

Elementos

Infraestructu Complement

Infraestructur
Procesamien
Infraestructur

miento Seguridad

Dispos. de

Org. lógica Protocolos

Cableado

Introducción

- Requisitos de diseño y normativas
 - Estructuración en Áreas Funcionales en TIA-942
 - Niveles de redundancia (Tiers) en TIA-942
- Elementos y organización física de los CD
 - Infraestructura complementaria
 - Infraestructura de procesamiento
 - Infraestructura de almacenamiento
 - Seguridad física en CD
- Elementos y dispositivos de red
 - Organización lógica
 - Protocolos
 - Cableado
 - Etiquetado

Introducción Normativas

Áreas funcionale TIA-942

Tiers TIA-9

Infraestructur Procesamien Infraestructur

Dispos. de re Org. lógica Protocolos

Normativas y estándares

Distintos tipos de Centros de Datos poseen características, restricciones y necesidades comunes

Normas/estándares

proporcionan guías y buenas prácticas imponen restricciones de rendimiento, seguridad, etc facilitan diseño uniforme y comparable

- ANSI/TIA-942 "Telecomunication Infraestructure Standard for Data Centers" (original de 2005, con ampliaciones en 2008, 2010 y revisión en 2012)
 Estándar para infraestructuras de telecomunicaciones en un centro de datos: requisitos de espacio, cableado, etc.
- CENELEC EN 50173-5 "InformationTechnology Generic Cabling Systems -Part 5: Data Centers" (2007)
- ISO/IEC 24764 "Information Technology Generic Cabling Systems for Data Centers" (2010)
- ANSI/BICSI-002 "Data Center Design and Implementation Best Practices" (2011)

Guía de buenas prácticas en el diseño e implementación de Centros de Datos: planificación de espacios, elección de emplazamiento, planificación de instalaciones, etc.

Adicionalmente:

normativas y reglamentos locales

código técnico de edificación normativas de instalaciones eléctricas protección contra incendios normas medioambientales (consumo eléctrico) Infraestructur Procesamien Infraestructur

Infraestructur Almacenamiento

Seguridad

Dispos. de

Org. lógica Protocolos Cableado

Estándar TIA-942

- Estándar ANSI (American National Standard) que especifica los requisitos mínimos para las infraestructuras de telecomunicaciones de Centros de Datos tanto de uso privado/exclusivo (single tenant) como de uso público/compartido (multi-tenant).
- Divide la la infraestructura requerida para el diseño de un Centro de Datos en 4 subsistemas:
 - telecomunicaciones
 - requisitos arquitectónicos/estructurales
 - sistema eléctrico
 - sistema mecánico


Estructura del cableado de CDs según TIA-942

- Separación de las acometidas de los proveedores de acceso a WAN (redes externas) de los elementos del Centro de Datos
- Cableado en "doble estrella" (≈ copo de nieve)
 - simplificable a estrella simple en CDs "sencillos"
- Áreas funcionales en TIA-942
 - ER cuarto/sala de entrada (Entrance Room)
 - MDA área de distribución principal (Main Distribution Area)
 - HDA área de distribución horizontal (Horizontal Distribution Area)
 - **ZDA** área de distribución por zona (*Zone Distribution Area*) [opcional]
 - EDA área de distribución de equipos (Equipment Distribution Area)
 - **TR** cuarto/sala de telecomunicaciones (*Telecommunications Room*)

En la actualización de 2010 se incluye un MDA de segundo nivel para el caso de grandes CDs: IDA área de distribución intermedia (Intermediate Distribution Area)

- Infraestructura de cableado en TIA-942
 - Cableado de backbone (cableado principal) [típicamente fibra óptica]
 - Cableado horizontal [par trenzado Cat6 o fibra óptica]

⁻ Distancia máxima para el cableado de backbone dependiente de la aplicación y de los medios

⁻ Hasta la ampliación de 2010 la máxima distancia permitida para el cableado horizontal era de 90 m. (actualmente flexibilizado, depende de cada infraestructura/instalación)

Áreas funcionales TIA-942

Tiers TIA-942

Esquema general de áreas funcionales en TIA-942

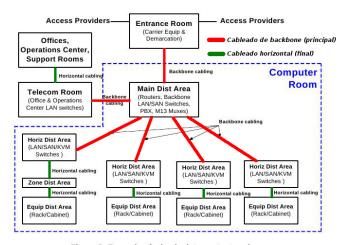


Figure 3: Example of a basic data center topology

ER: Entrance Room

- Zona donde se ubica el interfaz con la red externa (puede contener equipamiento propiedad del proveedor de redes)
- Punto de conexión entre el cableado interno del Centro de Datos y el cableado externo del proveedor/es de conexión WAN (cuarto de acometida)
- Idealmente externo al Centro de Datos (puede integrarse con MDA)

MDA: Main Distribution Area

- Zona donde se ubica el espacio central de distribución del cableado de backbone del CD
- Normalmente se ubican switchs, routers y demás dispositivos de comunicación de alta capacidad que dan soporte a las líneas de conexión principales (backbone) del CD.
 - actualmente cableado v switches Ethernet 10Gb. 40Gb ó 100Gbb
 - Da soporta a la conectividad de los HDA (centro de distribución de tráfico global)
 - Todos los CDs incluyen al menos una MDA
- Idealmente ubicada en la zona central del CD (por limitaciones en longitud de cableado) en un espacio propio (idealmente aislado)

HDA: Horizontal Distribution Area

- Ubicación que soporta la distribución del cableado horizontal hasta los EDA y la comunicación con el MDA central
- Centro de distribución de tráfico hacia los equipos finales (servidores. almacenamiento, etc)
- Ubicación de los paneles de parcheo (patches) de distribución de cableado horizontal
- Switches LAN (actualmente Ethernet 1Gb, incluso 10Gb) y switches SAN
- Al menos un HDA por planta (en CDs con varias plantas)

ZDA: Zone Distribution Area

- Componente opcional (en ocasiones simplifica organización del cableado)
- Distribución de tráfico horizontal, complementa al HDA
- Útil como punto de acceso a equipos no "enrackables" (servidores "stand alone", mainframes, ...)
- Por ejemplo: ubicación con switches locales comunes a grupos de racks de una fila

Seguridad

Org. lógica Protocolos

Protocolos Cableado Etiquetado

EDA: Equipment Distribution Area

- Distribución de tráfico horizontal de acceso a los equipos finales almacenamiento) [normalmente de un mismo rack]
- Terminación de los paneles de parchero hacia equipos finales
- Permite cableado directo (sin pasar por patches) entre equipos del mismo EDA
- Ejemplo típico: switch local para dar servicio a un rack

TR: Telecommunications Room

- Sala de operaciones del CD
- Punto de salida hacia el cableado horizontal hacia la red local organización (en CDs privados)

Infraestructu

Complementa

Procesamien

Almacenamiento

Seguridad

Dispos. de n

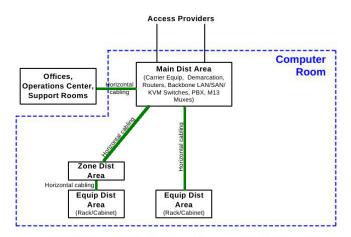
Org. lógica

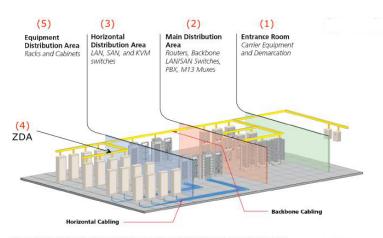
Cableado

Etiquetado

Esquema simplificado

Combina funcionalidades de MDA y HDA en un único MDA




Figure 4: Example of a reduced data center topology

Áreas funcionales TIA-942

Tiers TIA-942

Almacena-

Seguridad

Source: ADC's Data Center Optical Distribution Frame: The Data Center's Main Cross-Connect

Redundancia en TIA-942

- N: se cuenta con el nº de elementos (unidades/módulos/rutas) necesarios para la funcionalidad esperada de la infraestructura/servicio
 - sin redundancia (no soporta fallos/paradas)
- N+1: se cuenta con una unidad más de las necesarias (Need plus One)
 - soporta el fallo/parada/mantenimiento de un elemento sin afectar a la operación del CD
- 2N: se cuenta con un duplicado para cada uno de los elementos (unidades/módulos/rutas) necesarios
 - soporta el fallo/parada/mantenimiento de la totalidad de elementos necesarios sin afectar a la operación del CD (aún estaría disponible una réplica de cada elemento)
 - modos activo/pasivo vs. activo/activo
- 2(N+1): se cuenta además con replicación de la unidad extra
 - ante el fallo completo del sistema aún quedaría operativo un sistema con redundancia N+1
 - soportaría el fallo/parada/mantenimiento de un elemento aún después del fallo/parada/mantenimiento de la totalidad de elementos necesarios

Nota: En la clasificación por *Tiers*, estos tipos de redundancia suelen referirse a los elementos de alimentación (suministradores energía, SAIs, cableado de potencia, fuentes de alimentación, etc) イロト イ団ト イヨト イヨト ヨー 夕久へ Procesamieni Infraestructur Almacenamiento Seguridad

Org. lógica Protocolos Cableado Etiquetado

Tiers en TIA-942

TIA-942 define requisitos para 4 niveles de disponibilidad en función de la redundancia (junto con otros requisitos: ubicación, proveedores de servicios, ...)

- Definidas originalmente por el Uptime Institute (http://uptimeinstitute.com/)
- Cada organización adaptará su CD al nivel adecuado en función de sus necesidades de disponibilidad
- nivel 1 (Tier I) (CD básico)
 disponibilidad de 99.671 %
 máximo de 1729,22 minutos (28,9 horas) de downtime por año
- nivel 2 (Tier II) (CD con componentes redundantes) disponibilidad de 99.741 % máximo de 1361,30 minutos (22,7 horas) de downtime por año
- nivel 3 (Tier III) (CD concurrentemente mantenible) disponibilidad de 99.982 % máximo de 90,61 minutos (1,58 horas) de downtime por año
- nivel 4 (Tier IV) (CD tolerante a fallos)
 disponibilidad de 99.995 %
 máximo de 26.28 minutos (0.44 horas) de downtime por año

Tier I (CD básico)

disp. 99.671 %

- Sin redundancia (o con redundancia mínima) [redundancia N]
- Susceptible de interrupciones planificadas y no planificadas
 - errores, fallos o tareas de mantenimiento ocasionan la parada del Centro de Datos (downtime)
- Debe contar con lineas de alimentación y refrigeración, pero no necesariamente con suelo técnico, SAIs o grupo electrógeno.
 - de tener SAI o grupo electrógeno serán unidades simples (sin redundancia)
- Requisitos de comunicaciones
 - Cuenta con un único enlace con el provedor de comunicaciones (enlace WAN único)
 - Una única línea de cableado backbone en el CD
- Se exige al menos una parada completa anual para reparaciones y mantenimiento preventivo
- Núm. líneas eléctricas: 1

- Puntos únicos de fallo: múltiples

Tiers en TIA-942

Tier II (CD con redundancia)

disp. 99.741 %

- Cuenta con ciertos componentes redundantes [redundancia N+1 "parcial"]
- Menos susceptible a paradas
- Cuenta con suelo técnico, SAI y grupo electrógeno
- Cuenta con una única línea de alimentación y refrigeración (redundancia N en alimentación)
 - las <u>SAI</u> o grupos electrógenos sí tienen <u>redundancia N+1</u>
- Mantenimiento de las lineas de alimentación y otros componentes básicos no redundantes provocan la parada del Centro de Datos
- Requisitos de comunicaciones añade a los del Tier I:
 - Cuenta con múltiples enlaces con el provedor de comunicaciones (enlaces WAN múltiples) [pueden compartir ER (entrance room)]
 - Fuentes de alimentación redundantes en routers, switches y demás dispos. de comunicación
 - Conexión redundante ente HDA y MDA (no exige líneas separadas, pueden compartir fibras/cable)
- Núm. líneas eléctricas: 1

- Puntos únicos de fallo: múltiples

Tiers en TIA-942

Tier III (concurrentemente mantenible)

disp. 99.982 %

- Múltiples líneas de alimentación y refrigeración [redundancia N+1 en alimentación y SAIs]
 - sólo se exige que una de ellas esté activa
- Permite que las operaciones del CD continúen mientras se ejecuta mantenimiento planificado
 - se entiende por mantenimiento planificado: reparación, reemplazo, eliminación o adición de componentes, pruebas del sistema, etc
- Actividades no planificadas (errores y fallos imprevistos) pueden eventualmente provocar la parada del CD
- Requisitos de comunicaciones añade a los del Tier II:
 - Se exige contar con al menos dos provedores de comunicaciones distintos ⇒ se debe disponer de 2 ER (entrance room) [ER secundario]
 - Líneas de cableado backbone del CD redundantes (rutas de cableado separadas)
 - Routers, switches y demás dispos. de comunicación redundantes
- Núm. Iíneas eléctricas: 1 activa + 1 pasiva Puntos únicos de fallo: algunos Nota: es habitual diseñar los CD Tier III con la previsión de futuras migraciones a Tier IV en caso de que la actividad de la organización lo requiera (y justifique el coste de la actualización)

Tiers en TIA-942

Tier IV (tolerante a fallos)

disp. 99.995%

- Múltiples líneas de alimentación (idealmente de distintos proveedores) y refrigeración activas simultáneamente.
- Todos los dispositivos tienen entradas de alimentación duplicadas
- Capacidad para soportar al menos un fallo o incidente no planificado (en el "peor escenario previsto") sin causar impacto en la operación del CD (las paradas planificadas siguen sin perturbar la operación del CD [Tier III])
 - El "peor escenario previsto" suele requerir redundancia 2N o 2(N+1)
 - Como mínimo es así [redund. 2N ó 2(N+1)] en SAIs y grupos electrógenos
- Requisitos de comunicaciones añade a los del Tier III:
 - Cableado backbone del CD redundante y canalizado
 - MDA secundaria (opcional, aunque recomendada) con su propias líneas de cableado backbone a cada ER (entrance room) y a las HDA
 - Cableado horizontal redundante opcional
- Núm. líneas eléctricas: 2 activas (simultáneas)
 - Puntos únicos de fallo: sólo catástrofe o fallo humano

Nota: se contempla que por normativas eléctricas v/o antincendios que pueden requerirse paradas de emergencia (Emergency Power Off (EPO)) anuales (simulacros, comprobaciones de alarmas de incendio,)

Seguridad

Tiers en TIA-942

Adicionalmente TIA-942 define otro tipo de requisitos específicos para cada *Tier*

ubicación y arquitectura del CD

proximidad a zonas inundables, zonas sísmicas, autopistas, aeropuertos, tipos de paredes. resistencia a incendios, alturas, resistencia del suelo técnico elevado, anchos de puertas/ventanas, accesos, zonas de carga/descarga, salas adicionales (centros de control, almacén), vigilancia por cirtuito cerrado, almacenamiento de combustible para grupos electrógenos, etc

alimentación eléctrica

requisitos de SAIs, autonomía y tiempos de arranque de grupos electrógenos, iluminación del CD, protección ante sobretensiones, puesta a tierra, cableado de potencia, protección ante electricidad estática.

especificación mecánica de los elementos del CD

temperatura y humedad recomendada, ventilación y aire acondicionado, tuberías, protección antincendios (detección y extinción), etc

Introducción

Áreas funcionales TIA-942 Tiers TIA-942

Elementos

Infraestructura Complementa ria

Procesamient Infraestructura

Almacenamiento

Seguridad

Dispos. de

Protocolos

Cableado

Introducción

Requisitos de diseño y normativa:

- Estructuración en Áreas Funcionales en TIA-942
- Niveles de redundancia (Tiers) en TIA-942
- 3 Elementos y organización física de los CD
 - Infraestructura complementaria
 - Infraestructura de procesamiento
 - Infraestructura de almacenamiento
 - Seguridad física en CD
- Elementos y dispositivos de red
 - Organización lógica
 - Protocolos
 - Cableado
 - Etiquetado

Org. lógica Protocolos Cableado

Organización física

Racks (tb. bastidores, cabinas, armarios)

- Estructuras estandarizadas para el alojamiento de equipamiento informático (rack servers), de comunicación (switch, router, paneles de conexión, cableado [racks de cableado]), alimentación eléctrica (SAIs, PDUs), etc
- Permiten alojar grandes cantidades de elementos de forma compacta y ordenada
- Anchura típica de los módulos 19" (482.6 mm) [anchura total externa 60cm, 80cm, ...]
- Altura de los racks y de los módulos que se integran en ellos medida en unidad rack (1U) (1.75 ", 44.45 mm))

También módulos half-rack con anchura de 281.3 mm (2 en cada hueco 1U)

- Profundidad variable [habitualmente a partir de 60cm]
- Montaje y fijación de módulos sencilla
- Puertas con rejilla para ventilación, etiquetado de espacios 1U, soportes para cables, regletas de alimentación (normalente redundantes)etc

Infraestructura Procesamient Infraestructura Almacenamiento

Dispos. de re Org. lógica

Protocolos Cableado

Organización física

Suelos técnicos elevados

- Losetas estándar 60x60cm
- Usos
 - Canalización de cableado (datos y/o potencia) según restricciones
 - Circulación del aire acondicionado (salida de aire frío mediante losetas con rejilla)

Conducciones de cable

- Separación por tipos (cableado de datos, cableado de potencia) según normas para evitar interferencias
 - también separación por tecnología de comunicación: par tranzado, fibra óptica
 - uso de bandejas de cableado
- Líneas elevadas ancladas al techo
- Líneas bajo suelo técnico

Climatización

Elementos necesarios para asegurar las condiciones ambientales (temperatura, humedad, filtrado de partículas en suspensión) fijados por el nivel *Tier* y los requisitos específicos del equipamiento del Centro de Datos

- Aspecto crítico en el rendimiento del CD y en aspectos de eficiencia energética
- Pueden ser exclusivos del CD (dedicados) o del edificio que lo alberga (compartidos)
- Combinados con la propia estructura del CD (suelos elevados, rejillas de ventilación, disposición de racks [cold aisle/hot aisle]) y/o su ubicación (proximidad a fuentes de agua, etc)
- Elementos:
 - HVAC Heating, ventilation, and air conditioning: Sistema de control ambiental en su conjunto: control de temperatura, humedad, flujo y caudal de aire, partículas en suspensión
 - CRAC Computer Room Air Conditioners: Dispositivos de aire acondicionado instalados en las salas del CD
 - en ocasiones con misma estructura y dimensiones que los racks

Introduce

Áreas funcionales TIA-942

Flement

Infraestructura Complementaria

Infraestructura Procesamiento Infraestructura Almacenamiento Seguridad

Org. lógica Protocolos Cableado

Configuración de racks [cold aisle/hot aisle] alternados

cold aisle (pasillo frío): partes frontales de los racks enfrentadas

sistema de climatización impulsa aire frío por las rejillas del suelo técnico

hot aisle (pasillo caliente): partes traseras de los racks enfrentadas (salidas de ventilación)

• el aire caliente se eleva (menor densidad y empuje del aire frío de la climatización)

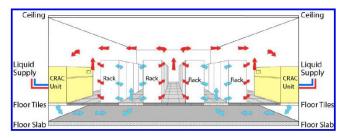


Figure 4.6: Datacenter raised floor with hot-cold aisle setup (image courtesy of DLB Associates [45]).

Fuente: The DataCenter as a Computer. An Introduction to to the the Design of Warehouse-Scale Machines, 2nd Edition Luiz André Barroso, Jimmy Clidaras, Urs Hölzle

Elementos necesarios para asegurar suministro eléctrico sin paradas conforme a las especificaciones y niveles de redundancia del nivel *Tier* del Centro de Datos.

- Tipicamente, se contará con una o varias conexiones de media/baja tensión a la red suministrador/es.
- Aspecto clave (junto con la climatización) en la eficiencia energética de los CDs (Power usage effectiveness (PUE))

Sistemas de Alimentación Ininterrumpida (SAI)

- UPS ((Uninterrupted Power System)
- Incluye baterias que abastecen de energía por tiempo limitado a los equipos conectados al SAI
- Suelen realizar funciones complementarias: estabilizado de tensión (filtrado de picos y caidas de tensión), protección/atenuación de interferencias electromagnéticas,
- Suelen incluir funciones de monitorización y alerta, control remoto, ...

Almacenamiento Seguridad Dispos. de rec

Org. lógica Protocolos Cableado Etiquetado

Alimentación eléctrica

Grupos electrógenos

- Generadores alimentados por combustibles fósiles (gasóleo)
- Sumistran energía eléctrica ante interrupciones de la red catástrofes, ...)
- Limitados por la disponibilidad de combustible (necesidad de depósitos de almacenamiento) y requisitos de mantenimiento y revisión
- Suelen ubicarse en el exterior del CD (evita interferencias, ruidos, humos, riesgo de incendio, ...)

Otros

- PDU (Power Distribution Unit)
 - Elementos de distribución del cableado de alimentación a los dispositivos finales ("regletas mejoradas")
 - Suelen poder integrarse en los racks (enrackables) como un módulo más
 - Suelen contar con puertos de conexión para monitorización (estado, consumo de energía, control remoto)
- Cableado de potencia, cuadros electricos, canalizaciones, regletas, etc

PUE: Power usage effectiveness

Medida de la eficiencia energética de los centros de datos

PUE = energía total consumida energía consumida por equipamiento TI

- Valor ideal: 1.0 (100 % del consumo dedicado a TI)
- Valores típicos: 2.0-2.5 (\approx 50 % del consumo dedicado a TI)
- Centros de datos eficientes PUF < 15

Consumo total del CD

- Alimentación eléctrica
 - líneas, SAIs, generadores, transformadores, ...
- Climatización aire acondicionado, ventilación, calefacción, ...
- Seguridad control de accesos, videovigilancia, ...
- Otros equipos antincendios, iluminación, ...

Consumo Ti

- Equipos de cómputo (servidores)
- Dispositivos de almacenamiento
- Equipos de comunicaciones

Introducción

Áreas funcionales TIA-942

Tiers TIA-942

Element

Infraestructura Complementa-

Infraestructur Procesamien

Almacenamiento

Segunda

Org. lógica
Protocolos
Cableado

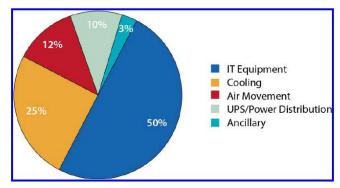


Figure 5.2: Power losses in a traditional (legacy) data center.

Fuente: The DataCenter as a Computer. An Introduction to to the the Design of Warehouse-Scale Machines, 2nd Edition Luiz André Barroso, Jimmy Clidaras, Urs Hölzle

http://www.morganclaypool.com/doi/abs/10.2200/S00516ED2V01Y201306CAC024

Elementos de procesamiento/computo

Gran parte de los Centros de Datos está ocupado por la infraestructura de cómputo encargada de procesar los datos manejados por la organización

 Se materializa en una colección de servidores interconectados entre sí, con la infraestructura de almacenamiento y con el exterior

Normalmente servidores organizados en clusters

- clusters de balanceo de carga
- clusters de alta disponibilidad (redundancia, tolerancia a fallos), balanceo de carga)
- clusters de alto rendimiento (procesamiento distribuido)

Tendencia actual hacia la virtualización de la capacidad de cómputo

- consolidación de servicios agrupándolos en menor nº de máquinas físicas(ahorro energético, simplificación de administración)
- mayor nivel de abstracción (cloud computing)

Infraestructura Procesamiento

Almacenamiento

Seguridad

Org. lógica
Protocolos
Cablaado

Elementos de procesamiento/computo

Alternativas

- Servidores independientes (stand alone)
 - Equipos "completos" e independiente que no necesitan otra infraestructura
 - Típico en servidores para pequeñas organizaciones
 - También en mainframes, p. ej. Serie Z de IBM
 - Mayor ocupación de espacio, eventualmente menor aprovechamiento de alimentación y/o ventilación
- Servidores en Rack
 - Equipos "enrackables" montados en módulos 1U, 2U, 3U. 4U, ...
 - Menores requisitos de espacio y facilidad de integración en un CD basado en racks
 - Opción más habitual en CD de tamaño medio/grande

TIA-942

Tiers TIA-942

Infraestructura Procesamiento

Almacena-

Seguridad

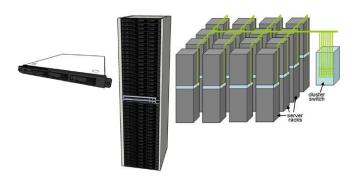


FIGURE 1.1: Typical elements in warehouse-scale systems: 1U server (left), 7' rack with Ethernet switch (middle), and diagram of a small cluster with a cluster-level Ethernet switch/router (right).

Fuente: The DataCenter as a Computer, An Introduction to to the the Design of Warehouse-Scale Machines, 2nd Edition Luiz André Barroso, Jimmy Clidaras, Urs Hölzle

http://www.morganclaypool.com/doi/abs/10.2200/S00516ED2V01Y201306CAC024

Infraestructura Procesamiento

Elementos de procesamiento/computo

Alternativas

- Servidores Blade
 - Equipo simplificado montado en una "tarjeta" (incluye microprocesador, memoria v buses)
 - Se montan en un chasis (4U, 8U, ...) que integra el resto de elementos
 - ventilador y fuente alimentación replicadas
 - switch y puertos de redes
 - controladoras de almacenamiento (discos locales o SAN)
 - chasis para hasta 8 o 16 blades
 - Permite mayor densidad de capacidad de cómputo con menores costes (de adquisición y de consumo energético)
 - Menos propensos a fallos (hardware simple)
 - Posibilidad de cambio "en caliente"
 - Habitual en clusters de alto rendimiento (supercomputación)

Introducción

Áreas funcionales TIA-942

TIA-942 Tiers TIA-942

Elemen

Infraestructu Complement

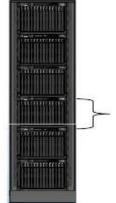
Infraestructura Procesamiento

Almacenamiento

Segurida

Dispos. de i

Org. lógica


Protocolos

Cableado

1-RU Blade Servers

- 42 server per-rack
- LAN 84 per-rack
- SAN: 84 percabinet

7U Blade each having 14 Servers

Blade Servers cluster

- 84 server per-rack
- LAN 168 per-rack
- SAN: 168 percabinet

Fuente: BICSI (https://www.bicsi.org/)

Infraestructu Complemen

Infraestructur

Procesamiento Infraestructura

Almacenamiento

Segurida

Org. lógica Protocolos Cableado

Almacenamiento

Los elementos para dar soporte al almacenamiento conforman el otro gran bloque de componentes de los CDs

De modo general se identifican dos grandes alternativas

Redes de almacenamiento (SAN)

- SAN (Storage Area Network)
- Red dedicada al almacenamiento común a los nodos de procesamiento
 - red dedicada (iSCSA, FibreChannel, AoE [ATA over Ethernet], FCoE [FibreChanel over Ethernet])
 - elementos de comunicación (cableado, conmutadores, ...)
 - dispositivos de almacenamiento (discos)
- Otros esquemas de almacenamiento centralizado: NAS (network attached storage)

Tiers TIA-

Elementos

Complement ria

Infraestructur Procesamien

Infraestructura

Almacenamiento

Seguridad

Dispos. de n

Org. lógica

Cableado

Almacenamiento

Sistemas de archivos distribuidos

- Los nodos de procesamiento (servidores) tienes sus propios dispositivos de almacenamiento
- Se cuenta con un sistema de fichero distribuido que los unifica (normalmente introduciendo redundancia y rack-awareness)
 - OCFS2 (Oracle Cluster File System), GFS/GFS2 (Global File System), DRBD (Distributed Replicated Block Device)
 - GFS (Google File System), HDFS (Hadoop Distributed File System)

Seguridad

Seguridad Física. ISO 27001/27002

Objetivo de la Seguridad Física

Asegurar a nivel físico un grado adecuado de confidencialidad integridad disponibilidad para los

equipos y datos que alberga el CD.

Norma ISO 27002: Catálogo de controles de seguridad a implantar en un Sistema de Gestión de la Seguridad de la Información.

Área de Seguridad física y del entorno

Objetivo 9.1 Áreas seguras

Prevenir el acceso no autorizado, los daños y las interferencias a los recursos e información de la organización. Puntos de control:

- Perímetro físico de seguridad.
- Controles de entrada física.
- Asegurando oficinas, cuartos y herramientas.
- Protección contra amenazas externas y ambientales.
- Trabaio en áreas seguras.
- Acceso público y áreas de carga y descarga.

Introducción

funcionales TIA-942

Tiers TIA-9

Infraestructu

Complementa

Procesamiento Infraestructura

Almacena miento

Seguridad

Dienoe do

Org. lógica

Protocolos

Cableado

Área de Seguridad física y del entorno

Objetivo 9.2 Seguridad en los equipos

Prevenir la pérdida, daño, robo ó compromiso de los activos y la interrupción de las actividades de la organización.

Puntos de control:

- Protección y emplazamiento de los equipos.
- Utilidades de soporte.
- Seguridad en el cableado.
- Mantenimiento de equipos.
- Seguridad de los equipos fuera de la organización.
- Eliminación ó reutilización segura de los equipos.
- Eliminación de la propiedad.

Consideraciones generales sobre Seg. Física (1)

Control de accesos: contar con mecanismos de control de accesso a las dependencias del CD y seguimiento y auditoria.

- Configuración típica en 3 áreas en función de su criticidad
 - uso de elementos separadores ("jaulas") entre zonas
 - ubicadas de menor a mayor proximidad a los accesos al CD
- Zonas frías: alberga elementos de acceso restringido a los que se precisa acceso frecuente (switches, router, paneles de cableado)
- Zonas templadas: elementos con frecuencia de acceso intermedia (racks y servidores)
- Zonas calientes: elementos especialmente sensibles de acceso más restringido (racks, servidores, dispos. almacenamiento)
- Todas las zonas cuentan con mecanismos de bloqueo (separadores, puertas, cerraduras), de control de acceso (tarjetas magnéticas/chip, biometría,...) y de monitorización y seguimiento (registros y logs de entradas/salidas)
- Opcionalmente: videovigilancia y detectores de presencia, segregación del personal por niveles de acceso,...

Procesamie Infraestructi Almacena-

Almacena miento

Seguridad

Org. lógica Protocolos

Consideraciones generales sobre Seg. Física (2)

Protección ante desastres (incendio, inundaciones, subidas de tensión, actos vandálicos, ...)

- Seguimiento de normativas y estándares de diseño (TIA-942)
- Mecanismos de prevención/detección (armarios/puertas ignífugos, detectores de humo,...)
- Mecanismos de extinción automática, evacuación, formación del personal, ...
- Existencia de copias de seguridad y políticas de copia de seguridad y réplicación y recuperación de datos (on-site y off-site)

Tiers TIA-942

Dispos, de red

- - Estructuración en Áreas Funcionales en TIA-942
 - Niveles de redundancia (Tiers) en TIA-942
- - Infraestructura complementaria
 - Infraestructura de procesamiento

 - Seguridad física en CD
- Elementos y dispositivos de red
 - Organización lógica
 - Protocolos
 - Cableado
 - Etiquetado

Org. lógica

Organización lógica

TIA-942 define organización "física" en zonas para el cableado del CD

Habitualmente: arquitectura lógica con una jerarquía de 3 niveles para organizar dispositivos de red

- Capa de acceso: switches que dan acceso a los equipos finales para conformar los segmentos LAN (edge switches)
- Capa de distribución: router y switches que interconectan segmentos de la capa de acceso (distribution switches)
 - servicios/funcionalidades adicionales comunes a diversos elementos del CD.
 - ejemplos: firewalls, acceso VPNs, detectores de intrusiones, balanceo de carga, cache, etc
- Capa de núcleo: switches y routers de alta velocidad/capacidad dando soporte a conectividad de capa de distribución y acceso a WAN
 - punto clave: rendimiento y disponibilidad

Nota: La infraestructura de red empleada en el almacenamiento (SAN, NAS) se puede considerar una capa adicional (capa de almacenamiento) con características equivalentes a la capa de acceso

Correspondencia con zonas TIA-942

núcleo → MDA

acceso → ZDA + FDA

distribución → MDA + HDAs

almacenamiento → ZDA + FDA

Infraestructu Procesamier Infraestructu

Almacenamiento Seguridad

Dispos. de re Org. lógica Protocolos Cableado

Protocolos

Protocolos LAN (redes locales)

- Fundamentalmente Ethernet [IEE 802.3] (tanto en horizontal como en backbone)
- Ethernet 1Gb, 10Gb, 40 Gb, 100 Gb
- En clusters de alto rendimiento (HPC: high performance computing) → uso de redes InfiniBand [baja latencia + gran ancho de banda]
 - en HPC se tiende a convergencia hacia Ethernet

Protocolos SAN (redes de almacenamiento)

- Conexión entre HBA (controladores de disco en servidores) y dispositivos de la SAN
- FibreChannel [canal de fibra] (1 Gb, 2 Gb, 4 Gb, 8 Gb, 10 Gb, 16 Gb) sobre fibra óptica
- Baja latencia, alto rendimiento, confiable (garantiza entrega)
- Convergencia con tecnologías LAN → FCoE (Fibre Channel on Ethernet)
- ullet iSCSI (Internet SCSI) \to permite el uso del protocolo SCSI sobre redes TCP/IP

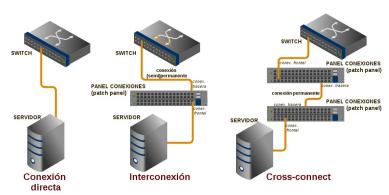
Infraestructu Almacenamiento Seguridad

Org. lógica Protocolos

Cableado

Tipos de cableado

Medios reconocidos para cableado backbone


- Par trenzado 100 ohmios: Categorías 5e, 6 y 6A (6A recomendada [admite Ethernet 10GB])
- Fibra óptica multimodo: OM3 y OM4 (OM4 recomendada)
- Fibra óptica monomodo

Medios reconocidos para cableado horizontal (LAN, SAN, conex. de control, video/teclado/ratón, voz, ...)

- Par trenzado 100 ohmios: Categorías 5e, 6 y 6A (6A recomendada)
- Fibra óptica multimodo: OM3 y OM4 (OM4 recomendada)
- Fibra óptica monomodo

Cableado

Organización de las conexiones

menor flexibilidad Conexión directa:
 en TIA-942 sólo está permitida en conexiones dentro del mismo rack

mayor flexibilidad conexiones permanentes aunque no sean usadas Cross-connect: <</p>

Introducció

IIIII OUUCCIOI

Áreas funcionales TIA-942

Tiers TIA-9

Elemente

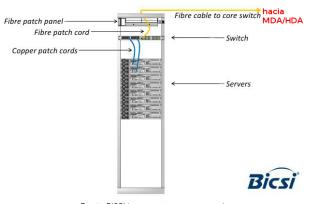
Infraestructur Complementa

Intraestructur

Procesamien

Almacena

Seguridad


Org. lógica

FIUIUCUIU

Cableado

Oubloade

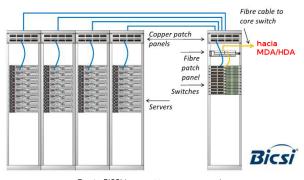
Top-of-rack (tb. in-rack)

Fuente: BICSI (https://www.bicsi.org/)

Menor coste de cableado (menos complejidad, casi todo concentrado en el propio rack)

Líneas de cobre cortas ⇒ { cumple requisitos distancia menor consumo y atenuación

Modularidad y facilidad de crecimiento (añadir más racks)


Necesita mayor nº de switches ⇒ dificulta gestión, actualizaciones, etc

TIA-942

Tiers TIA-942

Cableado

End-of-row (tb. in-row)

Fuente: BICSI (https://www.bicsi.org/)

Menor n^{ϱ} de switches \rightarrow reduce coste de dispositivos Complica la gestión del cableado Menor tolerancia a fallos en switches

Etiquetado

Etiquetado

El anexo B de la norma TIA-942 impone/especifica el etiquetado de todos los elementos del Centro de Datos (racks, unidades dentro de racks, paneles de conexión, cableado [en ambos extremos], switches y routers, ...)

- Usa el esquema del estándar ANSI/TIA-606-A
- Racks etiquetados en base a las "coordenadas" de la/s loseta/s del suelo elevado que ocupa (fila [2 dígitos] + columna [2 letras])
- Paneles de conexión (patch panels): etiqueta del rack al que pertencen + etiqueta de su "posición" (altura) dentro del rack [1/2 letras]
 - Cada puerto del panel de conexión identificado por 2 ó 3 caracteres (añadidos a la etiqueta del panel)
 - La conexión vinculada a cada puerto del panel de conexión se etiqueta con los identificadores completos del puerto de origen y del puerto destino
- En cada extremo de un cable (tanto cables frontales de los paneles de conexión como en los traseros) se incluyen los identificadores completos de ambos extremos (con el extrema más cercano en primera posición)