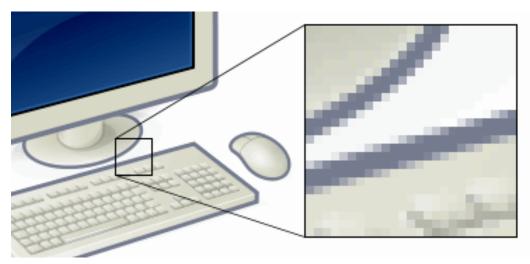
Universida_{de}Vigo

Arquitecturas Paralelas Curso 2023/2024

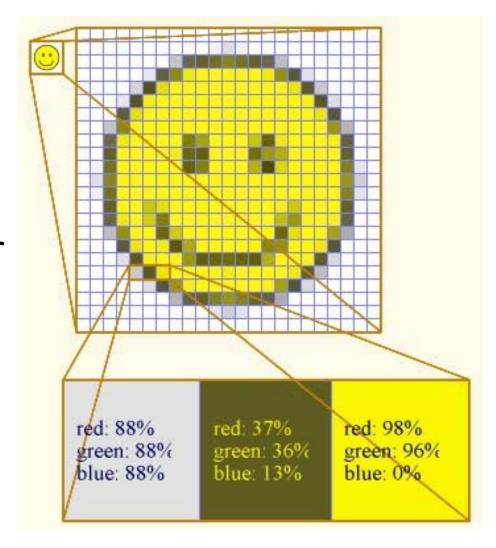

Tema 1 Multimedia y SIMD

Contenido

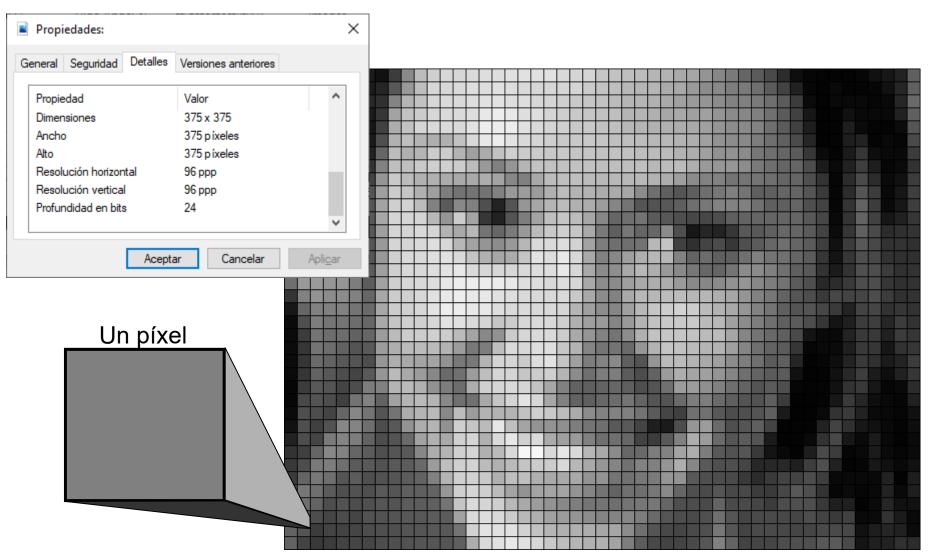
- Conceptos de audio e imagen
- SIMD (Taxonomía de Flynn)
- Instrucciones MMX, SSE, SSE2, SSE3, SSE4, AVX, AVX2, AES-NI,...
- Aplicaciones en audio, imagen y vídeo

Píxel

- <u>Píxel</u> (Del ingl. *pixel*, y este acrónimo de *pix*, pl. coloq. de *picture*, retrato, imagen, y *element*, elemento).
 - 1. m. *Inform.* Superficie homogénea más pequeña de las que componen una imagen, que se define por su brillo y color.



Bitmaps y Vectoriales


 Las imágenes se pueden clasificar siguiendo distintos criterios, aunque uno de los más interesantes es la forma en que una imagen se encuentra descrita en el ordenador, pudiendo dividirlas en imágenes vectoriales e imágenes en mapa de bits.

Bitmaps

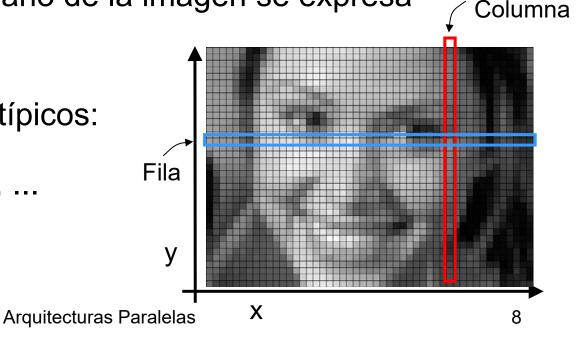
 Las imágenes de mapa de bits o bitmaps están formadas por una rejilla de píxeles, cada uno con su valor de color, de tal forma que su agrupación crea la ilusión de una imagen de tono continuo.

Bitmaps

Bitmaps

 Una imagen digital es una matriz, o array bidimensional, de números. Cada elemento de la matriz es un píxel.
 Ejemplo. Imagen de 15 columnas x 20 filas.

90	67	68	75	78	98	185	180	153	139	132	106	70	80	81	69	69	67	35	34
92	87	73	78	82	132	180	152	134	120	102	106	95	75	72	63	75	42	19	29
63	102	89	76	98	163	166	164	175	159	120	103	132	96	68	42	49	46	17	22
45	83	109	80	130	158	166	174	158	134	105	71	82	121	80	51	12	50	31	17
39	69	92	115	154	122	144	173	155	105	98	86	82	106	83	76	17	29	41	19
34	80	73	132	144	110	142	181	173	122	100	88	141	142	111	87	33	18	46	36
37	93	88	136	171	164	137	171	190	149	110	137	168	161	132	96	56	23	48	49
66	117	106	147	188	202	198	187	187	159	124	151	167	158	138	105	80	55	59	54
127	136	107	144	188	197	188	184	192	172	124	151	138	108	116	114	84	46	67	54
143	134	99	143	188	172	129	127	179	167	106	118	111	54	70	95	90	46	69	52
141	137	96	146	167	123	91	90	151	156	121	93	78	82	97	91	87	45	66	39
139	137	80	131	162	145	131	129	154	161	158	149	134	122	115	99	84	35	52	30
137	133	56	104	165	167	174	181	175	169	165	162	158	142	124	103	67	19	31	23
135	132	65	86	173	186	200	198	181	171	162	153	145	135	121	104	53	14	15	33
132	132	88	50	149	182	189	191	186	178	166	157	148	131	106	78	28	10	15	44


Nomenclatura

- Nº de columnas de la matriz: ancho de la imagen (width).
- Nº de filas de la matriz: alto de la imagen (height).
- Eje horizontal: eje x.
- Eje vertical: **eje y**.

Normalmente el tamaño de la imagen se expresa

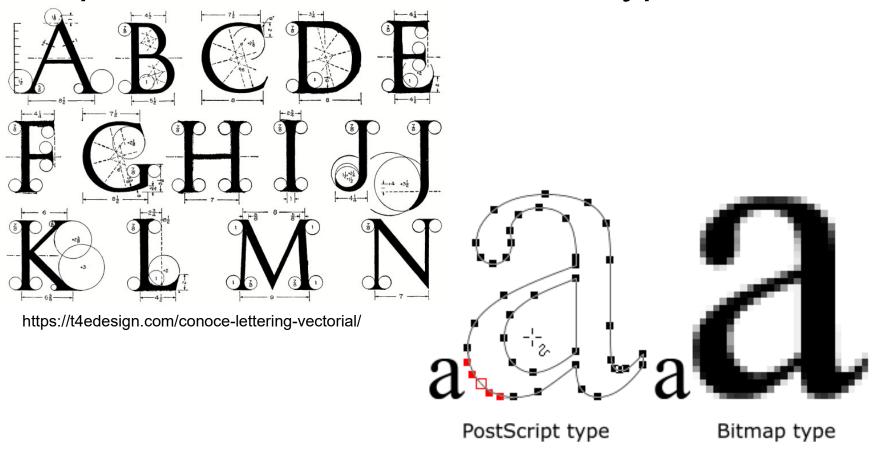
como: ancho x alto

• **Ejemplo.** Tamaños típicos: 320x240, 640x480, 800x600, 1024x768, ...

Nomenclatura

- Origen de coordenadas:
 - Top-left: el píxel (0, 0) es la esquina superior izquierda. → Suele ser el más habitual.
 - Bottom-left: el píxel (0, 0) es la esquina inferior izquierda. → Usado en algunos formatos (p.ej. BMP).
- Almacenamiento de los distintos canales:
 - Entrelazado (interleaved, pixel order): R₀, G₀, B₀, R₁, G₁,
 B₁, R₂, G₂, B₂, ..., R_n, G_n, B_n.
 - No entrelazado (non-interleaved, plane order): R₀, R₁, R₂, ..., R_n, G₀, G₁, G₂, ..., G_n, B₀, B₁, B₂, ..., B_n.

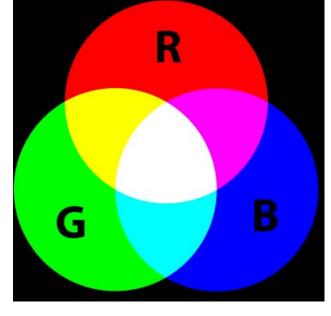
Imágenes Vectoriales


 Las imágenes vectoriales, o imágenes orientadas a objetos, son el segundo gran grupo de imágenes digitales. Las imágenes se almacenan y representan por medio de trazos geométricos controlados por cálculos y fórmulas matemáticas.

En pantalla se muestran como bitmaps.

Imágenes Vectoriales

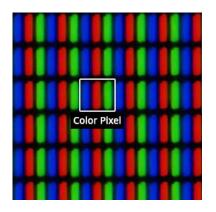
Tipos de letras o fuentes Truetype



http://carlosbenitezmendoza5.blogspot.com/2016/01/612-fuentes-tipograficas.html

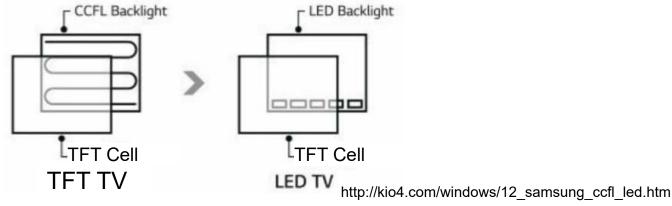
El Color en las Computadoras

 El RGB (Red-Green-Blue) es un modelo de color con el que es posible representar un color mediante la mezcla por adición de los tres colores de luz primarios: rojo,


verde y azul.

Arquitecturas Paralelas

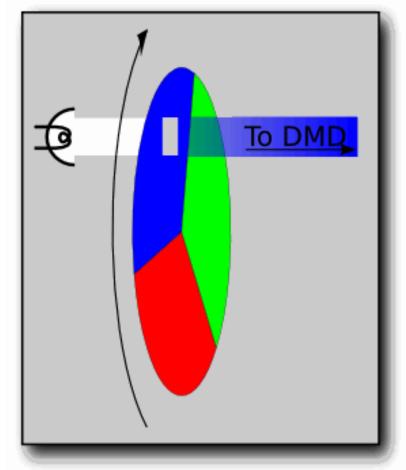
El Color en las Computadoras


- Cada punto de la pantalla o píxel es en realidad un conjunto de tres subpíxeles: uno rojo, uno verde y uno azul.
- En las pantallas LCD o TFT, cada uno de estos subpixels es un elemento que deja pasar el color rojo, el verde o el azul. Cada subpixel puede controlarse independientemente. Debe existir una fuente de luz blanca detrás.

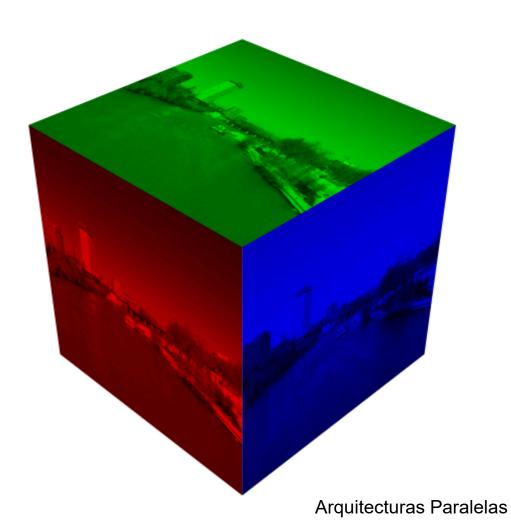
http://www.bigshotcamera.com/learn/lcd-display/lcd

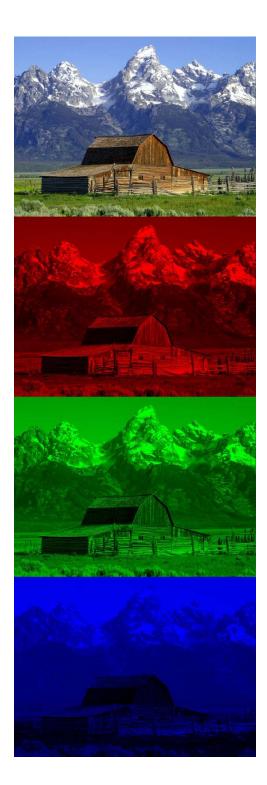
El Color en las Computadoras

 Los monitores TFT usan retroiluminación con lámparas fluorescentes y los LED son TFT con retroiluminación por LEDs.


 En los OLED cada diodo de la pantalla OLED emite un color (rojo, verde o azul) por sí mismo sin necesidad de retroiluminación.

El Color en un Proyector


El Color en un Proyector


https://projectorrepairindia.com/how-projector-colour-wheel-work/

El Color en las Computadoras

RGB

- El RGB, Red-Green-Blue o Rojo-Verde-Azul, es un modelo de color con el que es posible representar un color mediante la mezcla por adición de los tres colores de luz primarios.
- Es un modelo aditivo, con el que es posible representar un color mediante la mezcla por adición/suma de los tres colores de luz primarios.

RGB

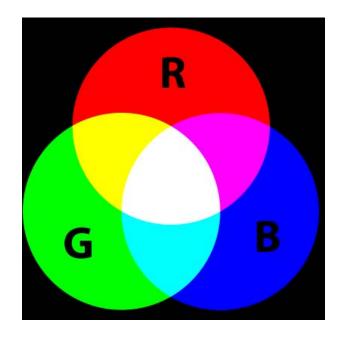
- Para indicar con que proporción mezclamos cada color, se asigna un valor a cada uno de los colores primarios, de manera, por ejemplo, que el valor 0 significa que no interviene en la mezcla y, a medida que ese valor aumenta, se entiende que aporta mas intensidad a la mezcla.
- Aunque el intervalo de valores podría ser cualquiera (valores reales entre 0 y 1, valores enteros entre 0 y 37, etc.), es frecuente que cada color primario se codifique con un byte (8 bits). Así, de manera usual, la intensidad de cada una de las componentes se mide según una escala que va del 0 al 255.

Profundidad de color

- La profundidad del color se refiere a la cantidad de bits de información necesarios para representar el color de un píxel en una imagen digital.
- Debido al uso del sistema binario de numeración, una profundidad de bits de *n* implica que cada píxel de la imagen puede tener 2ⁿ posibles valores y por lo tanto, representar 2ⁿ colores distintos.

HiColor y TrueColor

- **HiColour** es un RGB con 16 bits, 6 bits para el verde, 5 para el rojo y 5 para el azul. El ojo humano es más sensible al color verde. 65536 colores distintos.
- TrueColor: RGB de 24 bits, 16.777.216 colores distintos. 8 bits para verde, 8 para rojo y 8 para azul (a veces 32 bits, RGBA, canal alfa, transparencia u opacidad).



DeepColor

- HDMI 1.3 define el **DeepColour**, donde se pueden utilizar 10 bits, 12 bits o 16 bits para cada componente RGB.
- Por lo tanto se necesitarían 30 bits, 36 bits o 48 bits de color por píxel.

Otros

 3-bit RGB: un bit por color. Típico en los terminales de los años 70. Todavía usado en el TeleTexto.

 Este sistema utiliza la combinación de tres códigos de dos dígitos hexadecimales para expresar las diferentes intensidades de los colores primarios RGB.

Los tres colores básicos:

- Rojo: #FF0000h. El canal de rojo está al máximo y los otros dos al mínimo.
- Verde: #00FF00h. El canal del verde está al máximo y los otros dos al mínimo.
- Azul: #0000FFh. El canal del azul está al máximo y los otros dos al mínimo.

Las combinaciones básicas:

- Amarillo: #FFFF00h. Los canales rojo y verde están al máximo.
- Cyan: #00FFFFh. Los canales azul y verde están al máximo.
- Magenta: #FF00FFh. Los canales rojo y azul están al máximo.

Grises:

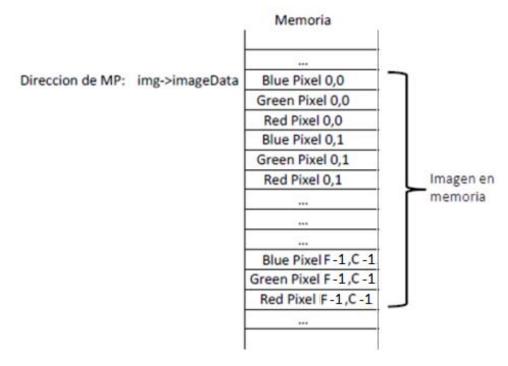
- Gris claro: #D0D0D0h. Los tres canales tienen la misma intensidad
- Gris oscuro: #5E5E5Ee. Los tres canales tienen la misma intensidad

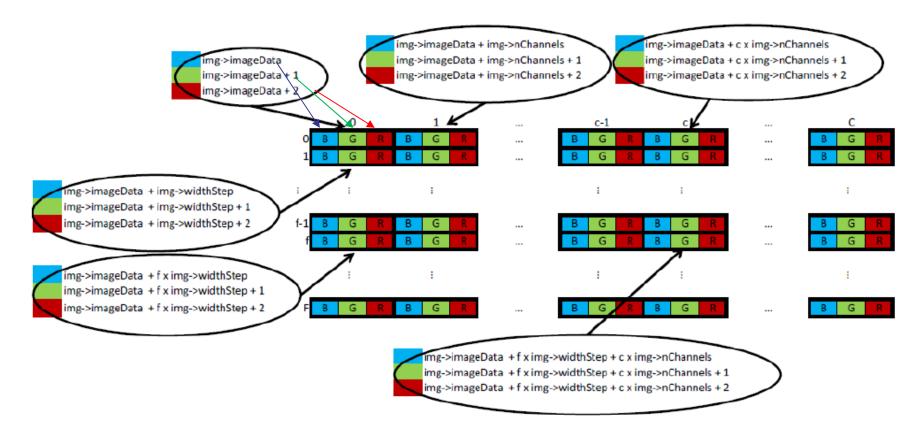
Blanco y negro:

- Negro: #000000h. Los tres canales están al mínimo 00h, 00h y 00h, ausencia de color.
- Blanco: #FFFFFFh. Los tres canales están al máximo
 FFh, FFh y FFh.

- Colores definidos por la especificación HTML 4.01:
 - Cyan #00FFFFh, black #000000h, blue #0000FFh, fuchsia #FF00FFh, gray #808080h, green #008000h, lime #00FF00h, maroon #800000h, navy #000080h, olive #808000h, purple #800080h, red #FF0000h, silver #C0C0C0h, teal #008080h, white #FFFFFh, yellow #FFFF00h.

 http://www.colores.org.es/verdeandroid.php


 https://www.pantone.com/eu/es/colorfinder/13-0851-TCX


- Programación en C
- Punteros
- Punteros a distintos tipos de datos
- Aritmética de punteros

 struct define estructuras de datos complejas en C

```
typedef struct _IplImage {
    int nSize;
    int ID;
    int nChannels; ←
                                                      1,3 o 4
    int alphaChannel;
    int depth;
                                                      IPL DEPTH 8U Unsigned 8-bit integer
    char colorModel[4];
                                                      IPL DEPTH 8S Signed 8-bit integer
    char channelSeq[4];
                                                      IPL DEPTH 16U Unsigned 16-bit integer
    int origin;
                                                      IPL DEPTH 16S Signed 16-bit integer
    int align;
                                                      IPL DEPTH 32S Signed 32-bit integer
    int width; ←
                                                      IPL DEPTH 32F Single-precision floating point
    int height; ←
                                                      IPL DEPTH 64F Double-precision floating point
    struct _IplROI *roi;
    struct _IplImage *maskROI;
    void *imageId;
    struct _IplTileInfo *tileInfo;
    int imageSize;
    char *imageData;
    int widthStep;
    int BorderMode[4];
    int BorderConst[4];
    char *imageDataOrigin;
                                                                                            30
IplImage;
```

		Imager	n de F filas y C colum	nas	
	0	1	2		C-1
0	pixel 0,0	pixel 0,1	pixel 0,2	***	pixel 0,C -1
1	pixel 1,0	pixel 1,1	pixel 1,2	***	pixel 1,C -1
2	pixel 2,0	pixel 2,1	pixel 2,2	***	pixel 2,C-1
	***	***	***	****	***
1	pixel F-1,0	pixel F-1,1	pixelF-1,2		pixel F-1,C-1

